

UNIFood2021 Conference

24th-25thSeptember 2021 University of Belgrade

2ndInternational UNIfood Conference

ACE INHIBITOR ACTIVITY AND ANTIOXIDANT ACTIVITY OF MOUNTAINOUS AND PLAIN EWE'S MILK CHEESES AND THE INFLUENCE OF DIFFERENT HERBS ON THE VOLATILE COMPOUNDS

Erhan I. Sulejmani

University of Tetova, Department of Food Technology, Tetovo, R. North Macedonia

Abstract _

This study aimed to investigate the comparison of mountainous and plain areas on the composition, angiotensin-converting enzyme inhibitor (ACE-I) activity, peptide profile and antioxidant activity of Macedonian traditional cheeses. In this study, white brined and beaten cheese, were produced from ewe's milk from mountain (MW, MB) and plain areas (PW, PB) in almost the same traditional manufacturing steps. The cheeses (MW, MB, PW, PB) have been analysed for antioxidant activity and ACE-I activity after 60 days of ripening. The levels of antioxidant and ACE-i activity between the cheeses were found to be the lowest with 98.2 and 82.8 % in the plain white cheese (PW) and highest with 107.6 and 95.5% in mountain white cheeses (MW), respectively.

MATERIALS

A three-gram portion of each sample was placed in a 15-mL vial, and then 10 μ L of internal standard containing 100 ppm 2-methyl-3-heptanone, 300 ppm 2-methyl-1-pentanoic acid and 278 ppm ethyl heptanoate in methanol (Sigma-Aldrich Co., St. Louis, MO, USA) was added to the vial and the mixture allowed to equilibrate at 40 °C for 30 min

Micro extraction of volatiles aromatic components with GC-MS/ HS-SPME system Shimadzu QP-2010 The second part of this study compared the volatile profiles during ripening of white cheese (MW) and herbs containing cheeses (*Mentha longifolia* - WM, *Alium sativum* - WG, *Petroselinum crispum* - WP), made by using ewes' milk. The profiles of volatile compounds of cheeses were analyzed by GC/MS using a solid-phase microextraction (SPME). In the volatile fraction of the herbal cheeses, the volatile components consisted of 7 ketones, 9 acids, 16 esters, 19 alcohols, 8 hydrocarbons, 16 terpenes, 5 aldehydes and 11 others. The main chemical class among the herbal cheeses was acids and esters (68 % and 18 % w/w of all volatile components, respectively). A significantly (P<0.05) higher concentration of the volatile compounds was found in the White cheese with Garlic and White cheese with Menta with 41 % and 27 % of total volatile compounds, respectively. These differences in the volatile profiles of cheeses can be explained by the differences in raw materials, spices and production conditions.

Ketones 3%

Ketones 4%

Ketones 1%

	Main volatile aromatic compounds in cheeses produced with herbs								
Acides	MW	WM	WP	WG	Estere	MW	WM	WP	WG
Propiolic acid		9±2a	6±2a	NDa	Methyl Acetate	1.09±0.3ab		1±0.ab	5.9±3.3c
Acetic acid	175 ± 40^{abc}		545±190 ^{bcd}	781±362 ^d	Ethyl Acetate	45±12.01bc	73±16c	$45\pm5bc$	157±24.1d
2-methyl propanoic acid.		24±11ab	$19\pm6.7ab$	34 ± 13^{b}	Methyl butyrate	2±0a	7±2a	4±0.9a	13±8.11a
Butanoic acid		405±199a	377 ± 152^{a}	648 ± 324^{a}	3 ethyl ester butanoic				
Pentanoic acid		59±36a	577 ± 152 53±22 ^a	NDa	acid.	NDa	NDa	NDa	NDa
					Ethyl butyrate	36±5.7a	75±19bc	41±2ab	107±39c
Iso-Valeric Acid	NDa 1	ND a	NDa	62±30 ^b	n-Butyl acetate	4.3±0.5a	7±2ab	4.2±1a	25±0.9c
Hexanoic acid	136±47a 6	691 ± 41^{abcd}	635 ± 264^{abcd}	1021 ± 55^{bcd}	Isoamyl acetate	1.1±0.05 ^{ab}	3 ± 0.9^{de}	$0.7{\pm}1.8^{b}$	5 ± 1^{e}
Octanoic Acid	39±22a	184±129a	187±98a	301±183a	Ethyl n-valerate	0.6±0.1b	NDa	NDa	NDa
Capric acid	13±10a 6	68±53a	76±41a	130±94a	Ethyl capronate	13±0.2a	23±33a	23±3a	162±50b
Total	480 2	2043	1901	2981	1-Hexyl acetate	NDa	NDa	NDa	NDa
		TI 77 /			Methyl			The Sunday of Street	
Vataria		WM	WP	WG	trichloroacetate	42.3±1.7a		45±3a	65±13.6ab
Ketones		2 < 0 1 1	22.021	(1, 0, 1, 1)	Ethyl trichloroacetate		17±13b	6±0.2a	7±0.8ab
2-Propanone	3.3 ± 0.5^{a}			6.1±2.1d	Methyl octanoate	NDa	NDa	NDa	NDa
2.3-Butanedione	ND ^a	ND ^a	NDa	ND ^a	Ethyl octanoate	1±0a	10±5a	0.0±0.0a	64±18b
2-Pentanone	3.31±0.3	a 2.5±0.2a	ND ^a	ND ^a	Methyl caprate	0.36±0.51a		NDa	NDa
2-Heptanone	4.21±5.9	a 4.9±5.7a	ND^{a}	11.4±3.70a	Ethyl decanoate	0.00±0.00a	3±2a	0.78±1a	15±10b
2-Octanone	0.11±0.1	a NDa	ND^{a}	ND ^a	Ethyl phthalate	26±1a	65±93a	40±5a	226±161b
3-Hydroxy -2-butanone	3.71 ± 0.7^{a}	4.4 ± 1.5	3.4 ± 2.05^{abc}	5.5 ± 1.9^{abc}	Total	277	408	308	948
6-Methyl-5-heptenone	NDa	ND ^a	ND^{a}	ND^{a}					
2-Nonanone	2.2 ± 0.3^{al}	^b ND ^a	$18.8 \pm 21.^{abc}$	5.2 ± 1.9^{ab}					
8-Nonen-2-one	ND ^a	ND ^a	ND ^a	ND^{a}					
2-Undecanone	ND ^a	ND ^a	ND ^a	ND^{a}					
2-methyl hexanone	NDa	105±36b	NDa	NDa					
Total	17	110	25	2.8					

CONCLUSION

Consumers are more aware about the relationship between their eating habits and nutritional status. Currently, they have interest in maintaining good health; therefore, they have become more careful in the food they choose to consume, looking for food with a high nutritional value, bioactive compounds and antioxidant capacity.

This is an opportunity for some companies to manufactured food products with the partial or total replacement of those chemical additives by natural herbal.

Acknowledgments

This research was conducted as part of the project-"Innovative focus on natural mountain herbal – flavored cheese by protecting traditional production methods"

Reference

Sulejmani, E, Sahingil, D., Hayaloglu, A.A. (2020). A comparative study of compositional, antioxidant capacity, ACE-inhibition activity, RP-HPLC

